0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 4 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 1192 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 618 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 550 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 117 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 1000 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 271 ms)
↳32 CpxRNTS
↳33 FinalProof (⇔, 0 ms)
↳34 BOUNDS(1, n^2)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
plus(s(x), y) → s(plus(x, y))
times(s(x), y) → plus(y, times(x, y))
quot(x, 0, s(z)) → s(div(x, s(z)))
plus(x, 0) → x
plus(0, y) → y
div(0, y) → 0
div(x, y) → quot(x, y, y)
times(s(0), y) → y
quot(s(x), s(y), z) → quot(x, y, z)
times(0, y) → 0
quot(0, s(y), z) → 0
plus(s(x), y) → s(plus(x, y)) [1]
times(s(x), y) → plus(y, times(x, y)) [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
plus(x, 0) → x [1]
plus(0, y) → y [1]
div(0, y) → 0 [1]
div(x, y) → quot(x, y, y) [1]
times(s(0), y) → y [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
times(0, y) → 0 [1]
quot(0, s(y), z) → 0 [1]
plus(s(x), y) → s(plus(x, y)) [1]
times(s(x), y) → plus(y, times(x, y)) [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
plus(x, 0) → x [1]
plus(0, y) → y [1]
div(0, y) → 0 [1]
div(x, y) → quot(x, y, y) [1]
times(s(0), y) → y [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
times(0, y) → 0 [1]
quot(0, s(y), z) → 0 [1]
plus :: s:0 → s:0 → s:0 s :: s:0 → s:0 times :: s:0 → s:0 → s:0 quot :: s:0 → s:0 → s:0 → s:0 0 :: s:0 div :: s:0 → s:0 → s:0 |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
quot
div
times
plus
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
div(z', z'') -{ 1 }→ quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' = y, y >= 0, z' = 0
plus(z', z'') -{ 1 }→ x :|: z'' = 0, z' = x, x >= 0
plus(z', z'') -{ 1 }→ y :|: z'' = y, y >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0
quot(z', z'', z1) -{ 1 }→ quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z
times(z', z'') -{ 1 }→ y :|: z'' = y, y >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(y, y) :|: z' = 1 + (1 + 0), z'' = y, y >= 0
times(z', z'') -{ 2 }→ plus(y, plus(y, times(x', y))) :|: z' = 1 + (1 + x'), z'' = y, x' >= 0, y >= 0
times(z', z'') -{ 2 }→ plus(y, 0) :|: z'' = y, y >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' = y, y >= 0, z' = 0
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
{ div, quot } { plus } { times } |
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: ?, size: O(n1) [z'] quot: runtime: ?, size: O(n1) [1 + z'] |
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] |
div(z', z'') -{ 6 + 3·z' + z'' }→ s' :|: s' >= 0, s' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s :|: s >= 0, s <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] |
div(z', z'') -{ 6 + 3·z' + z'' }→ s' :|: s' >= 0, s' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s :|: s >= 0, s <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] plus: runtime: ?, size: O(n1) [z' + z''] |
div(z', z'') -{ 6 + 3·z' + z'' }→ s' :|: s' >= 0, s' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s :|: s >= 0, s <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] |
div(z', z'') -{ 6 + 3·z' + z'' }→ s' :|: s' >= 0, s' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s :|: s >= 0, s <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + z'' }→ s2 :|: s2 >= 0, s2 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 3 + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] |
div(z', z'') -{ 6 + 3·z' + z'' }→ s' :|: s' >= 0, s' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s :|: s >= 0, s <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + z'' }→ s2 :|: s2 >= 0, s2 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 3 + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] times: runtime: ?, size: O(n2) [2·z'·z'' + 2·z''] |
div(z', z'') -{ 6 + 3·z' + z'' }→ s' :|: s' >= 0, s' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s :|: s >= 0, s <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + z'' }→ s2 :|: s2 >= 0, s2 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 3 + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] times: runtime: O(n2) [3 + 4·z' + 2·z'·z'' + z''], size: O(n2) [2·z'·z'' + 2·z''] |